If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2-8p-45=0
a = 4; b = -8; c = -45;
Δ = b2-4ac
Δ = -82-4·4·(-45)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-28}{2*4}=\frac{-20}{8} =-2+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+28}{2*4}=\frac{36}{8} =4+1/2 $
| 8n-5=7n-n+9 | | 6p+12=30= | | 8d-8d=20 | | 93=g-58 | | 8d-8$=20 | | (x)2=16 | | 9(3x+5)=-4(-2x+3) | | 3p^2-8p-45=0 | | x^2/3+15=24 | | 24p^2-8p-45=0 | | -0.3c=2.7 | | 4^(x^2-11x+30)=16 | | 5x-31=2x=11 | | 6j-4)=18 | | e+(-7.3)=0.34 | | 5(6x+2)=4(7x+8) | | 7x+9x+1-7+90=360 | | -24x=-4 | | (x-30)(x+22)=0 | | 3(3x-5)=6(x+2) | | 3w+60=180 | | 13n+7n+6n+12-16=360 | | -7v-8=6 | | 2x-20=3x-5 | | 6*(5-x)+15=5*(2x-7) | | n=57+90=8 | | 2(8x+5)=3(2x+20) | | 6+5x=8x-9 | | 8*(4x-4)=-5x-32 | | 3(3x+2)=2(x-4) | | −3=−4/9f | | 12,500-200h=6,500+1,000h |